3. CASUÍSTICA E MÉTODOS

3.1 Casuística

Foram selecionados 847 indivíduos, independente de sexo, grupo étnico e idade, distribuídos em seis grupos.

- Grupo 1 (G1) 43 pacientes com diagnóstico de aneurisma intracraniano familial.
- Grupo 2 (G2) 177 indivíduos familiares em primeiro grau de G1, com ou sem diagnóstico da doença;
- Grupo 3 (G3) 115 pacientes com diagnóstico de aneurisma intracraniano esporádico;
- Grupo 4 (G4) 276 indivíduos familiares em primeiro grau de G3;
- Grupo 5 (G5) 106 indivíduos com resultado negativo para angioressonância magnética;
- Grupo 6 (G6) 130 indivíduos familiares em primeiro grau de G5.

Todos os pacientes (aneurisma familial e esporádico) foram atendidos na Unidade de Neurocirurgia Vascular e Endovascular do Hospital de Base / Faculdade de Medicina de São José do Rio Preto - FAMERP/SP. O diagnóstico de AI foi constatado por tomografia de crânio ou angiografia digital por subtração (DAS). O grupo controle foi selecionado na referida unidade e que, por alguma hipótese diagnóstica, necessitaram ser submetidos à angioressonância magnética com resultado negativo para AI. Durante a abordagem dos pacientes para participação na pesquisa, foi explicado o que era aneurisma intracraniano, o envolvimento dos fatores genéticos e ambientais na predisposição à doença, assim como a importância deste estudo também com seus

familiares em primeiro grau. Foram excluídos indivíduos com história de doenças vasculares e tumores cerebrais e incluídos como familiares dos pacientes os familiares em primeiro grau destes (pais, irmãos, filhos). Este estudo foi avaliado e aprovado pelo Comitê de Ética em Pesquisa da Faculdade de Medicina de São José do Rio Preto – CEP/FAMERP (Processo 267/2008) (Anexo). Todos os indivíduos participaram mediante assinatura do Termo de Consentimento Livre e Esclarecido e preenchimento de um Questionário de Hábitos de Vida (Apêndices).

3.2 Métodos

3.2.1 Polimorfismos genéticos

Os pacientes foram submetidos à coleta de amostras de sangue venoso para análise dos polimorfismos *eNOS*-G894T (rs429358), *ELN*-A422G (rs2230806), *COL*1A2-Ala459Pro (rs42524), *VEGF*-C936T (rs3025039) e *ENG*-Ins/Del. A análise das variantes genéticas foi realizada mediante extração de DNA genômico de leucócitos (Salazar et al., 1998), com amplificação do DNA por PCR convencional (*polymerase chain reaction*), sendo cada tubo de reação composto por 50ng de DNA genômico em um volume final de 25μL, contendo 20pmol de cada *primer*; 0,1mmol/L dNTPs; 0,75mmol/L de MgCl₂; 5 mmol/L de tampão PCR 10 X; 0,25U de Taq polimerase (5U/μL) e 7μL de água deionizada. Em seguida, o produto de amplificação foi submetido às enzimas de restrição BanII, *Mbo*I e *Mva*I (Fermentas®) e *Msp*A1I e *Nla*III (New England BioLabs®), seguido de coloração com Gel Red (Uniscience®), eletroforese e análise em sistema de fotodocumentação. Os respectivos primers, e as etapas de amplificação e eletroforese para os referidos polimorfismos são apresentados

no Quadro 1. As Figuras 1 a 5 apresentam o perfil eletroforético para os polimorfismos estudados.

Quadro 1. Primers, etapas de amplificação e eletroforese dos polimorfismos eNOS-G894T, ELN-A422G, COL1A2-Ala459Pro, VEGF-C936T e ENG-Ins/Del.

Polimorfismo	Primer	Desnaturação inicial	Ciclagem (ciclos)	Desnaturação	Annealing	Extensão final	Ciclo final	Restrição enzimática	Fragmento (pb)	Eletroforese	Genótipos
eNOS-G894T	P1:5'AAGGCA	94°C/ 4 min	35	94°C/ 30 s	65°C/30 s	72°C/ 1 min	72°C/ 5	BanII -37°C/	248, 163, 85	Gel agarose	T/T
	GGAGACACT						min	16h		2%	
	GATGGA3') <i>(1</i> - T		0011 00 '	T/G
	P2:5'CCCAGT							MboI -		90V, 90 min	C/C
	CAATCCCTTT GGTGCTCA3'							37°C/16h			G/G
ELN-A422G	P1:5'CGCTCT	94°C/ 5 min	50	94°C/ 1 min e	62°C/ 1 min	72°C/ 1 min	72°C/ 5	MvaI -	262, 244,	Gel agarose	A/A
ELIV-A422G	AGACAAGGC	94 C/ 3 Hilli	30	30 s	02 C/ 1 mm	72 C/ 1 Hilli	min	37°C/ 16h	167, 111 e 89	2%	Л/Л
	CTGGGGGAA										A/G
	ATTTACATCC										
	3'										
	P2:5'CGCAAG									60V, 60 min	
	CTTCTGGAGG										G/G
	CCTGGGAGCC										
601110	AGTTTG3'	0.4007.5	2.5	0.400/.20	10.2007/20	7200/20	7000/10	3.5 4.17	407. 212	0.1	G/G
COL1A2- Ala459Pro	P1:5'TACCTG AGGCTTTGAG	94°C/ 5 min	35	94°C/ 30 s	49,3°C/30	72°C/30 s	72°C/ 10	MspA1I - 37°C/ 16h	427, 312 e 115	Gel agarose 2%	C/C
Ala459Pro	AC3'				S		min	37 C/ 1011	113	270	C/G
	P2:5'ATGTTTA									150V, 45 min	C/U
	TTGTGGTGGA									150 1, 15 11111	G/G
	G3'										0, 0
VEGF-C936T	P1:5'AAGGAA	95°C/ 5 min	30	95°C/ 60 s	59°C/ 1 min	72°C/ 60 s	72°C/ 10 min	NlaIII - 37°C/ 2h	208, 122 e 86	Gel agarose 2,5%	T/T
	GAGGAGACT										
	CTGCGC3′										T/C
	P2:5'TATGTG									90V, 90 min	
	GGTGGGTGTG										C/C
ENC L /D L	TCTACAGG3′	0.4007/ 4	20	0500/20	570C/20	7200/20	7200/5		107 . 100	C-1	I/I
ENG-Ins/Del	P1:5'TGTCTCA CTTCATGCCT	94°C/ 4 min	30	95°C/ 30 s	57°C/30 s	72°C/30 s	72°C/ 5 min		106 e 100	Gel agarose 1%	Ins/Ins
	CCA3'						111111			1 / 0	Ins/Del
	P2:5'GGTGCT									150V, 105 min	1113/120
	TCACCAACAG									, 100 IIIII	Del/Del
	TGTG3'										

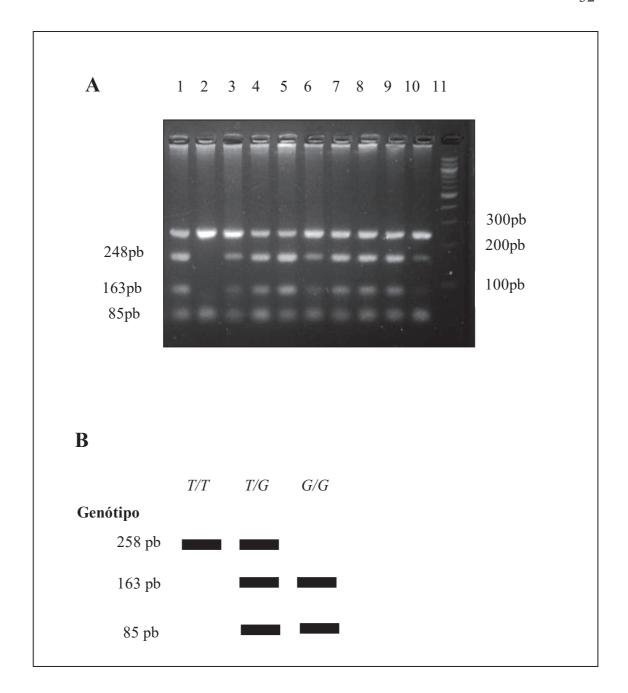


Figura 3. Perfil eletroforético para o polimorfismo *eNOS*-G894T apresentado em: A) fotografia de gel de agarose 2%: genótipo *T/G* nas colunas 1, 3-10 e *T/T* na coluna 2; coluna 11 com DNA padrão (*Ladder* 100pb – Fermentas) pb = pares de base; B) esquema apresentando os respectivos genótipos *T/T* (homozigoto mutante), *T/G* (heterozigoto) e *G/G* (homozigoto selvagem), sob ação da restrição enzimática com BanII (Fermentas).

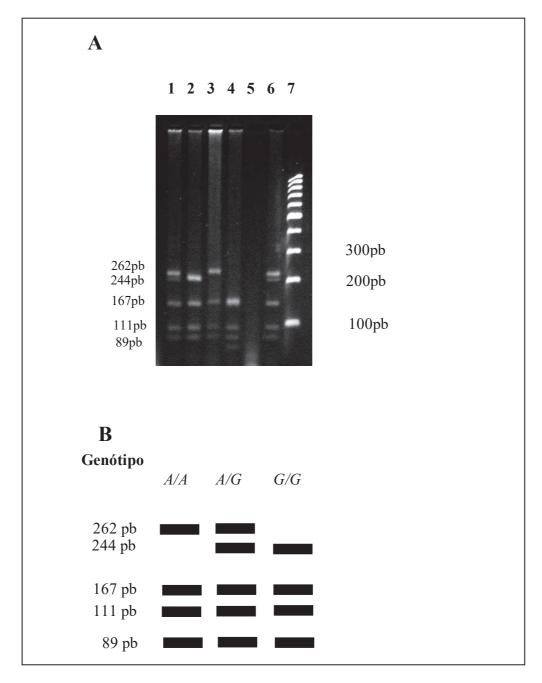


Figura 4. Perfil eletroforético para o polimorfismo *ELN*-A422G apresentado em: A) fotografia de gel de agarose 2%: genótipo *A/A* na coluna 3, *A/G* nas colunas 1 e 6, e *G/G* na coluna 2. A coluna 11 apresenta uma amostra de DNA padrão (*Ladder* 100pb – Fermentas) pb = pares de base; B) esquema apresentando os respectivos genótipos *A/A* (homozigoto selvagem), *A/G* (heterozigoto) e *G/G* (homozigoto mutante), sob ação da restrição enzimática com M*va*I (Fermentas).

Figura 5. Perfil eletroforético para o polimorfismo *COL*1A2-Ala459Pro apresentado em: A) fotografia de gel de agarose 2%: genótipo *C/C* nas colunas 1, 4, 11e 13, *C/G* nas colunas 3 e 7, e *G/G* nas colunas 2, 5, 6, 8, 9 e 12. A coluna 14 apresenta uma amostra de DNA padrão (*Ladder* 100pb – Fermentas) pb = pares de base; B) esquema apresentando os respectivos genótipos *C/C* (homozigoto mutante), *C/G* (heterozigoto) e *G/G* (homozigoto selvagem), sob ação da restrição enzimática com *Msp*A1I (*New England Biolabs*).

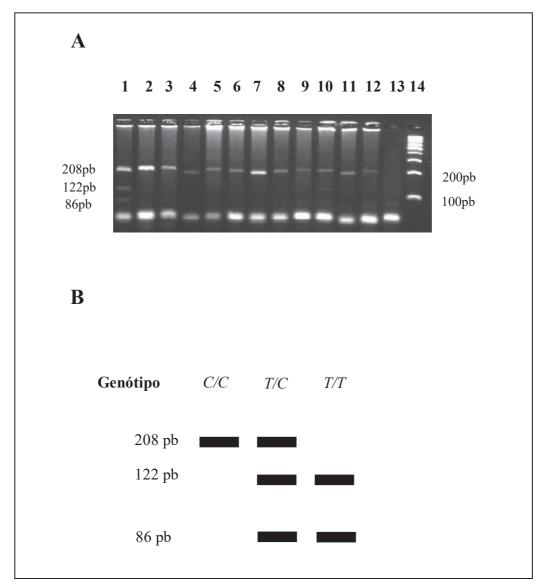


Figura 6. Perfil eletroforético para o polimorfismo *VEGF*-C936T apresentado em: A) fotografia de gel de agarose 2,5%: genótipo *T/C* nas colunas 1 e 10, e *C/C* nas colunas 3-9, 11 e 12. A coluna 14 apresenta uma amostra de DNA padrão (*Ladder* 100pb – Fermentas) pb = pares de base; B) esquema apresentando os respectivos genótipos *C/C* (homozigoto selvagem), *T/C* (heterozigoto) e *T/T* (homozigoto mutante) sob ação da restrição enzimática com NlaIII (*New England Biolabs*).

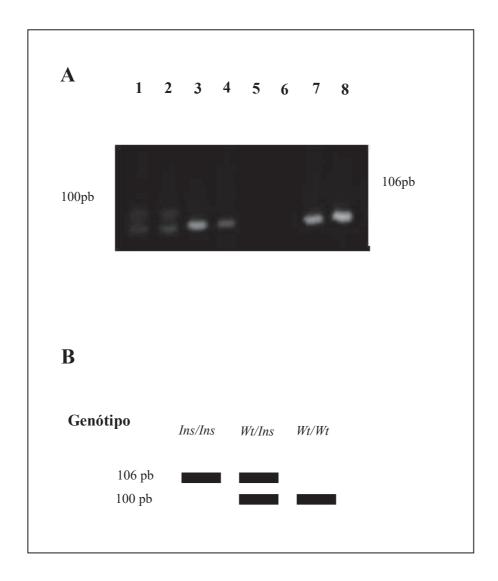


Figura 7. Perfil eletroforético para o polimorfismo *ENG*-Ins/Del apresentado em: A) fotografia de gel de agarose 1%: genótipos *Wt/Ins* (heterozigoto) nas colunas 1 e 2, *Wt/Wt* (homozigoto selvagem) nas colunas 3 e 4, e *Ins/Ins* (homozigoto mutante) nas colunas 7 e 8; B) esquema mostrando a disposição dos fragmentos representados por pares de base (pb) para cada genótipo de *ENG*-Ins/Del.

3.2.2 Análise estatística

No estudo comparativo entre os grupos com relação à idade aplicou-se teste t. Teste exato de Fisher ou Qui-quadrado (x^2) foi aplicado nas análises de combinação e distribuição alélica e genotípica dos polimorfismos *eNOS*-G894T, *ELN*-A422G, *COL*1A2-Ala459Pro, *VEGF*-C936T e *ENG*-Ins/Del. Nos cálculos de equilíbrio de Hardy-Weinberg, considerando a distribuição dos genótipos para os referidos polimorfismos, utilizou-se o teste de x^2 . Regressão logística foi realizada, para verificar a chance do evento (aneurisma intracraniano) na presença de diferentes variáveis, incluindo polimorfismos *eNOS*-G894T, *ELN*-A422G, *COL*1A2-Ala459Pro, *VEGF*-C936TI e *ENG*-Ins/Del, sexo e idade, tabagismo, etilismo, diabetes e hipertensão arterial, utilizando teste de comparações múltiplas de Kramer-Tukey. Foi admitido erro alfa de 5%, com nível de significância para P<0,05.